D1 in G2

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SO(8) and G2 × G2 N = 1 Supergravities in

We construct the N = 1 supergravity analog of the Green-Schwarz and heterotic superstring theories in 10D. We find the SO(8) theory previously found by compactification of 10D on K3. We also find eleven G 2 × G 2 theories, two with symmetric matter content. It is not obvious how tenof the G 2 × G 2 theories can be gotten from 10D. Ten-dimensional superstrings [1], [2], [3], [4] are one of the m...

متن کامل

Deformations in G2 Manifolds

Here we study the deformations of associative submanifolds inside a G2 manifold M 7 with a calibration 3-form φ. A choice of 2-plane field Λ on M (which always exists) splits the tangent bundle of M as a direct sum of a 3-dimensional associate bundle and a complex 4-plane bundle TM = E ⊕ V, and this helps us to relate the deformations to SeibergWitten type equations. Here all the surveyed resul...

متن کامل

Cyclin D1 Expression in Patients with Laryngeal Squamous Cell Carcinoma

Background & Objective: Laryngeal squamous cell carcinoma (LSCC) is considered to be one of the most common cancers of the head and neck, accounting for roughly 90% of all malignant tumors of the larynx. To have a timely diagnosis for a better and practical therapy, molecular markers have to be investigated. The aim of this study was to determine the expression of Cyclin D1 (CD...

متن کامل

Special Metrics in G2 Geometry

We discuss metrics with holonomy G2 by presenting a few crucial examples and review a series of G2 manifolds constructed via solvable Lie groups, obtained in [15]. These carry two related distinguished metrics, one negative Einstein and the other in the conformal class of a Ricci-flat metric, plus other features considered definitely worth investigating.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Cell Cycle

سال: 2002

ISSN: 1538-4101,1551-4005

DOI: 10.4161/cc.1.1.106